Journal Covers
Most up-to date list available on Google Scholar
*corresponding author(s)
Independent Research
52. Plasmonic Group IV Transition Metal Carbide Interfaces for Solar-Driven Desalination.
M. J. Margeson, M. Atwood, and M. Dasog*
ChemRxiv, 2023 (10.26434/chemrxiv-2023-chwlj)
51. Spent-Coffee Grounds-Derived Biochar-Supported Heterogeneous Catalyst: A Performance Evaluation and Mechanistic Approach for the Degradation of Pentachlorophenol.
R. Changotra, H. Rajput, J. Yang, M. Dasog,* and Q. S. He*
RSC Sustainability, Accepted, 2023 (10.1039/D3SU00153A)
50. Synthesis and Photothermal Properties of UV-Plasmonic Group IV Transition Metal Carbides.
M. J. Margeson, Y. Esfahani Monfared, and M. Dasog*
ACS Applied Optical Materials, 2023, 1, 1004–1011 (10.1021/acsaom.3c00073)
49. Nanostructured Silicon Photocatalysts for Solar Driven Fuel Production.
S. Putwa, I. S. Curtis, and M. Dasog*
iScience, 2023, 26, 106317 (10.1016/j.isci.2023.106317)
48. Solid-State Synthesis of UV-Plasmonic Cr2N Nanoparticles.
R. A. Karaballi, Y. Esfahani Monfared, I. C. Bicket, R. H. Coridan and M. Dasog*
Journal of Chemical Physics, 2022, 157, 254706 (10.1063/5.0109806)
(Selected as Editor's Pick)
47. Transition Metal Nitrides Are Heating Up the Field of Plasmonics.
M. Dasog*
Chemistry of Materials, 2022, 34, 4249–4258 (10.1021/acs.chemmater.2c00305)
46. Highly Sensitive Plasmonic Fiber-Optic Sensors using Group IV Transition Metal Nitrides: A Numerical Investigation.
Y. Esfahani Monfared,* B. L. Kurylyk and M. Dasog
Plasmonics, 2022, 17, 931–940 (10.1007/s11468-021-01579-3)
45. Computational Investigation of the Plasmonic Properties of TiN, ZrN, and HfN Nanoparticles: The Role of Particle Size, Medium, and Surface Oxidation.
Y. Esfahani Monfared* and M. Dasog*
Canadian Journal of Chemistry, 2021, 99, 576–584 (10.1139/cjc-2020-0335)
arXiv, 2020 (arXiv:2006.15246)
44. Photocatalytic Hydrogen Generation using Mesoporous Silicon Nanoparticles: Influence of Magnesiothermic Reduction Conditions and Nanoparticle Aging on the Catalytic Activity.
Isabel S. Curtis, Ryan J. Wills and M. Dasog*
Nanoscale, 2021, 13, 2685–2692 (10.1039/D0NR07463B)
(2021 Nanoscale Emerging Investigators Special Issue)
43. Plasmon-Enhanced Photocatalytic Nitrogen Reduction to Ammonia.
Evans A. Monyoncho and M. Dasog*
Advanced Energy and Sustainability Research, 2021, Accepted (10.1002/aesr.202000055)
42. Plasmonic Metal Nitrides for Solar-Driven Water Evaporation.
M. J. Margeson and M. Dasog*
Environmental Science: Water Research & Technology, 2020, 6, 3169–3177 (10.1039/D0EW00534G)
41. (Editorial) Checking in with Women Materials Scientists During a Global Pandemic: May 2020
R. Buonsanti, J. M. Buriak, L. Cabana, B. M. Cossairt, M. Dasog, S. Dehnen, J. L. Dempsey, A. N. Grace, D. Koziej, L. McElwee-White, C. Thomas, J. Y. Yang
Chemistry of Materials, 2020, 32, 4859–4862 (10.1021/acs.chemmater.0c02211)
(Most downloaded editorial in 2020)
40. Photothermal Transduction Efficiencies of Plasmonic Group 4 Metal Nitride Nanocrystals.
R. A. Karaballi, Y. Esfahani Monfared, M. Dasog*
Langmuir, 2020, 36, 5058–5064 (10.1021/acs.langmuir.9b03975)
39. TiN, ZrN, and HfN Nanoparticles on Nanoporous Aluminum Oxide Membranes for Solar-Driven Water Evaporation and Desalination.
E. Traver, R. A. Karaballi, Y. Esfahani Monfared, H. Daurie, G. A. Gagnon, M. Dasog*
ACS Applied Nano Materials, 2020, 3, 2787–2794 (10.1021/acsanm.0c00107)
38. Overview of Synthetic Methods to Prepare Plasmonic Transition Metal Nitride Nanoparticles.
R. A. Karaballi, Y. Esfahani Monfared, M. Dasog*
Chemistry - A European Journal, 2020, Accepted (10.1002/chem.201905217)
(R. A. K. and Y. E. M. contributed equally)
37. The Influence of Hydrofluoric Acid Etching Process on the Photocatalytic Hydrogen Evolution Reaction Using Mesoporous Silicon Nanoparticles.
S. A. Martell, U. Werner-Zwanziger, M. Dasog*
Faraday Discussions, 2020, 222, 176–189 (10.1039/C9FD00098D)
36. High Surface Area Mesoporous Silicon Nanoparticles Prepared via Two-Step Magnesiothermic Reduction for Stoichiometric CO2 to CH3OH Conversion.
S. A. Martell, Y. Lai, E. Traver, J. MacInnis, D. D. Richards, S. MacQuarrie, M. Dasog*
ACS Applied Nano Materials, 2019, 2, 5713–5719 (10.1021/acsanm.9b01207)
35. Synthesis of Plasmonic Group 4 Nitride Nanocrystals via Solid-State Metathesis.
R. A. Karaballi, G. Humagain, B. R. A. Fleischman, M. Dasog*
Angewandte Chemie International Edition, 2019, 58, 3147–3150 (10.1002/anie.201813134)
34. Electrochemical Water Oxidation in Acidic Solution using Titanium Diboride (TiB2) Catalyst.
M. J. Kirshenbaum, M. H. Richter, M. Dasog*
ChemCatChem, 2019, 11, 3877–3881 (10.1002/cctc.201801736)
(Highly Important Paper, Women of Catalysis Special Issue)
33. Highly Efficient, Biochar-derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst.
G. Humagain, K. MacDougal, J. ManInnis, J. M. Lowe, R. H. Coridan, S. MacQuarrie, M. Dasog*
Advanced Energy Materials, 2018, 8, 1801461 (10.1002/aenm.201801461)
32. Systematic Evaluation of Inorganic Salts as a Heat Sink for the Magnesiothermic Reduction of Silica.
L. Khanna, Y. Lai, M. Dasog*
Canadian Journal of Chemistry, 2018, 96, 965–968 (10.1139/cjc-2018-0165)
(Won CJC Best Paper Award, Nano/Hybrid Materials Special Issue)
31. Metallothermic Reduction of Silica Nanoparticles to Porous Silicon for Drug Delivery Using New and Existing Reductants.
Y. Lai, J. R. Thompson, M. Dasog*
Chemistry - A European Journal, 2018, 24, 7913–7920 (10.1002/chem.201705818)
30. Solid-State Route for Synthesis of Scalable, Luminescent Si and Ge Nanocrystals.
M. J. Kirshenbaum, M. G. Boebinger, M. J. Katz, M. T. McDowell, M. Dasog*
ChemNanoMat, 2018, 4, 423–429 (10.1002/cnma.201800059)
Postdoctoral Research
29. Oxidant-Activated Reactions of Nucleophiles with Silicon Nanocrystals.
M. Dasog,* J. R. Thompson, N. S. Lewis*
Chemistry of Materials, 2017, 29, 7002–7013 (10.1021/acs.chemmater.7b02572)
28. A Mechanistic Study of the Oxidative Reaction of Hydrogen-Terminated Si(111) Surfaces with Liquid Methanol.
N. T. Plymale, M. Dasog, B. S. Brunschwig, N. S. Lewis*
The Journal of Physical Chemistry C, 2017, 121, 4270–4282 (10.1021/acs.jpcc.6b11555)
27. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition.
M. Dasog, A. I. Carim, S. Yalamanchili, H. A. Atwater, N. S. Lewis*
Nano Letters, 2016, 16, 5015–5021 (10.1021/acs.nanolett.6b01782)
Graduate Research
26. Revisiting an Ongoing Debate: What Role do Surface Groups Play in Silicon Nanocrystal Photoluminescence?
R. Sinelnikov, M. Dasog, J. Beamish, A. Meldrum,* J. G. C. Veinot*
ACS Photonics, 2017, 4, 1920–1929 (10.1021/acsphotonics.7b00102)
25. CO2 to Methanol Conversion Using Hydride Terminated Porous Silicon Nanoparticles.
M. Dasog,* S. Kraus, R. Sinelnikov, J. G. C. Veinot,* B. Rieger*
Chemical Communications, 2017, 53, 3114–3117 (10.1039/C7CC00125H)
24. Silicon 1s Near Edge X-ray Absorption Fine Structure Spectroscopy of Functionalized Silicon Nanocrystals.
A. Ritchie, W. Cao, M. Dasog, T. K. Purkait, C. Senger, Y. F. Hu, Q. F. Xiao, J. G. C. Veinot, S. G. Urquhart*
The Journal of Chemical Physics, 2016, 145, 154703 (10.1063/1.4964371)
23. Silicon Nanocrystals and Silicon‐Polymer Hybrids: Synthesis, Surface Engineering, and Applications.
M. Dasog, J. Kehrle, B. Rieger,* J. G. C. Veinot*
Angewandte Chemie International Edition, 2016, 55, 2322–2339 (10.1002/anie.201506065)
(Highly cited article on Web of Science, 2016-present)
22. Charge Transfer State Emission Dynamics in Blue-Emitting Functionalized Silicon Nanocrystals.
G. B. De los Reyes, M. Dasog, M. Na, L. V. Titova, J. G. C. Veinot,* F. A. Hegmann*
Physical Chemistry Chemical Physics, 2015, 17, 30125–30133 (10.1039/C5CP04819B)
21. Evolution of the Ultrafast Photoluminescence of Colloidal Silicon Nanocrystals with Changing Surface Chemistry.
Z. Yang, G. B. De los Reyes, L. V. Titova, I. Sychugov, M. Dasog, J. Linnros, F. A. Hegmann,* J. G. C. Veinot*
ACS Photonics, 2015, 2, 595–605 (10.1021/acsphotonics.5b00143)
20. Influence of Halides on the Optical Properties of Silicon Quantum Dots.
M. Dasog,* K. Bader, J. G. C. Veinot*
Chemistry of Materials, 2015, 27, 1153–1156 (10.1021/acs.chemmater.5b00115)
19. Size vs. Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals across the Visible Spectrum via Surface Groups.
M. Dasog, G. B. De los Reyes, L. V. Titova, F. A. Hegmann, J. G. C. Veinot*
ACS Nano, 2014, 8, 9636–9648 (10.1021/nn504109a)
(Highly cited article on Web of Science, 2015-18)
18. Tuning Silicon Quantum Dot Luminescence via Surface Groups.
M. Dasog,* J. G. C. Veinot*
Physica Status Solidi B, 2014, 251, 2216–2220 (10.1002/pssb.201400026)
17. Water-Soluble Photoluminescent D-Mannose and L-Alanine Functionalized Silicon Nanocrystals and their Application to Cancer
Cell Imaging.
Y. Zhai, M. Dasog, R. B. Snitynsky, T. K. Purkait, M. Aghajamali, A. H. Hahn, C. B. Sturdy, T. L. Lowary, J. G. C. Veinot*
Journal of Materials Chemistry B, 2014, 2, 8427–8433 (10.1039/C4TB01161A)
16. Detection of High-Energy Compounds using Photoluminescent Silicon Nanocrystal Paper Based Sensors.
C. M. Gonzalez, M. Iqbal, M. Dasog, D. G. Piercey, R. Lockwood, T. M. Klapotke, J. G. C. Veinot*
Nanoscale, 2014, 6, 2608–2612 (10.1039/C3NR06271F)
15. Highly Luminescent Covalently Linked Silicon Nanocrystal/Polystyrene Hybrid Functional Materials: Synthesis, Properties, and
Processability.
Z. Yang, M. Dasog, A. R. Dobbie, R. Lockwood, Y. Zhi, A. Meldrum, J. G. C. Veinot*
Advanced Functional Materials, 2014, 24, 1345–1353 (10.1002/adfm.201302091)
(Inside front cover)
14. Doping and Quantum Confinement Effects in Single Si Nanocrystals Observed by Scanning Tunneling Spectroscopy.
O. Wolf, M. Dasog, Z. Yang, I. Balberg, J. G. C. Veinot,* O. Millo*
Nano Letters, 2013, 13, 2516–2521 (10.1021/nl400570p)
13. Red States vs. Blue States in Colloidal Silicon Nanocrystals: Exciton Sequestration into Low-Density Traps.
J. Fuzell, A. Thibert, T. M. Atkins, M. Dasog, E. Busby, J. G. C. Veinot, S. M. Kauzlarich, D. S. Larsen*
Journal of Physical Chemistry Letters, 2013, 4, 3806–3812 (10.1021/jz401896k)
12. Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals.
M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, J. G. C. Veinot*
ACS Nano, 2013, 7, 2676–2685 (10.1021/nn4000644)
(Highly cited article on Web of Science, 2014-17)
11. Low Temperature Synthesis of Silicon Carbide Nanomaterials Using a Solid-State Method.
M. Dasog, L. F. Smith, T. K. Purkait, J. G. C. Veinot*
Chemical Communications, 2013, 49, 7004–7006 (10.1039/C3CC43625J)
10. Size Independent Blue Luminescence in Nitrogen Passivated Silicon Nanocrystals.
M. Dasog, J. G. C. Veinot*
Physica Status Solidi A, 2012, 209, 1844–1846 (10.1002/pssa.201200273)
(Front cover)
9. Size-Controlled Solid-State Synthesis of Luminescent Silicon Nanocrystals using Stober Silica Particles.
M. Dasog, Z. Yang, J. G. C. Veinot*
CrystEngComm, 2012, 14, 7576–7578 (10.1039/C2CE25950H)
8. Solid-State Synthesis of Luminescent Silicon Nitride Nanocrystals.
M. Dasog, J. G. C. Veinot*
Chemical Communications, 2012, 48, 3760–3762 (10.1039/C2CC16971A)
7. From Si and C encapsulated SiO2 to SiC: Exploring the Influence of Sol-Gel Polymer Substitution on Thermally Induced
Nanocrystal Formation.
M. Dasog, C. Rachinsky, J. G. C. Veinot*
Journal of Materials Chemistry, 2011, 21, 12422–12427 (10.1039/C1JM11858G)
Undergraduate Research
6. Controlled Growth and Catalytic Activity of Gold Monolayer Protected Clusters in Presence of Borohydride Salts.
M. Dasog, W. Hou, R. W. J. Scott*
Chemical Communications, 2011, 47, 8569–8571 (10.1039/C1CC11813G)
5. Fluorescently Labeled Gold Nanoparticles with Minimal Fluorescence Quenching.
Y. Lu, M. Dasog, A. F. G. Leontowich, R. W. J. Scott, M. F. Paige*
The Journal of Physical Chemistry C, 2010, 114, 17446–17454 (10.1021/jp105516f)
4. Surface Properties of Water-Soluble Glycine-Cysteamine Protected Gold Clusters.
A. F. G. Leontowich, C. F. Calver, M. Dasog, R. W. J. Scott*
Langmuir, 2009, 26, 1285–1290 (10.1021/la902465b)
3. Probing the Relative Stability of Thiolate and Dithiolate Protected Au Monolayer-Protected Clusters.
W. Hou, M. Dasog, R. W. J. Scott*
Langmuir, 2009, 25, 12954–12961 (10.1021/la9018053)
2. Chemical Functionalization and Modification of Surface-Bound Cystamine-Glycine Monolayers on Gold Nanoparticles.
M. Dasog, A. Kavianpour, M. F. Paige, H. B. Kraatz, R. W. J. Scott*
Canadian Journal of Chemistry, 2008, 86, 368–375 (10.1139/v08-025)
1. Understanding the Oxidative Stability of Gold Monolayer-Protected Clusters in the Presence of Halide Ions under Ambient
Conditions.
M. Dasog, R. W. J. Scott*
Langmuir, 2007, 23, 3382–3387 (10.1021/la0627415)pages931–940
*corresponding author(s)
Independent Research
52. Plasmonic Group IV Transition Metal Carbide Interfaces for Solar-Driven Desalination.
M. J. Margeson, M. Atwood, and M. Dasog*
ChemRxiv, 2023 (10.26434/chemrxiv-2023-chwlj)
51. Spent-Coffee Grounds-Derived Biochar-Supported Heterogeneous Catalyst: A Performance Evaluation and Mechanistic Approach for the Degradation of Pentachlorophenol.
R. Changotra, H. Rajput, J. Yang, M. Dasog,* and Q. S. He*
RSC Sustainability, Accepted, 2023 (10.1039/D3SU00153A)
50. Synthesis and Photothermal Properties of UV-Plasmonic Group IV Transition Metal Carbides.
M. J. Margeson, Y. Esfahani Monfared, and M. Dasog*
ACS Applied Optical Materials, 2023, 1, 1004–1011 (10.1021/acsaom.3c00073)
49. Nanostructured Silicon Photocatalysts for Solar Driven Fuel Production.
S. Putwa, I. S. Curtis, and M. Dasog*
iScience, 2023, 26, 106317 (10.1016/j.isci.2023.106317)
48. Solid-State Synthesis of UV-Plasmonic Cr2N Nanoparticles.
R. A. Karaballi, Y. Esfahani Monfared, I. C. Bicket, R. H. Coridan and M. Dasog*
Journal of Chemical Physics, 2022, 157, 254706 (10.1063/5.0109806)
(Selected as Editor's Pick)
47. Transition Metal Nitrides Are Heating Up the Field of Plasmonics.
M. Dasog*
Chemistry of Materials, 2022, 34, 4249–4258 (10.1021/acs.chemmater.2c00305)
46. Highly Sensitive Plasmonic Fiber-Optic Sensors using Group IV Transition Metal Nitrides: A Numerical Investigation.
Y. Esfahani Monfared,* B. L. Kurylyk and M. Dasog
Plasmonics, 2022, 17, 931–940 (10.1007/s11468-021-01579-3)
45. Computational Investigation of the Plasmonic Properties of TiN, ZrN, and HfN Nanoparticles: The Role of Particle Size, Medium, and Surface Oxidation.
Y. Esfahani Monfared* and M. Dasog*
Canadian Journal of Chemistry, 2021, 99, 576–584 (10.1139/cjc-2020-0335)
arXiv, 2020 (arXiv:2006.15246)
44. Photocatalytic Hydrogen Generation using Mesoporous Silicon Nanoparticles: Influence of Magnesiothermic Reduction Conditions and Nanoparticle Aging on the Catalytic Activity.
Isabel S. Curtis, Ryan J. Wills and M. Dasog*
Nanoscale, 2021, 13, 2685–2692 (10.1039/D0NR07463B)
(2021 Nanoscale Emerging Investigators Special Issue)
43. Plasmon-Enhanced Photocatalytic Nitrogen Reduction to Ammonia.
Evans A. Monyoncho and M. Dasog*
Advanced Energy and Sustainability Research, 2021, Accepted (10.1002/aesr.202000055)
42. Plasmonic Metal Nitrides for Solar-Driven Water Evaporation.
M. J. Margeson and M. Dasog*
Environmental Science: Water Research & Technology, 2020, 6, 3169–3177 (10.1039/D0EW00534G)
41. (Editorial) Checking in with Women Materials Scientists During a Global Pandemic: May 2020
R. Buonsanti, J. M. Buriak, L. Cabana, B. M. Cossairt, M. Dasog, S. Dehnen, J. L. Dempsey, A. N. Grace, D. Koziej, L. McElwee-White, C. Thomas, J. Y. Yang
Chemistry of Materials, 2020, 32, 4859–4862 (10.1021/acs.chemmater.0c02211)
(Most downloaded editorial in 2020)
40. Photothermal Transduction Efficiencies of Plasmonic Group 4 Metal Nitride Nanocrystals.
R. A. Karaballi, Y. Esfahani Monfared, M. Dasog*
Langmuir, 2020, 36, 5058–5064 (10.1021/acs.langmuir.9b03975)
39. TiN, ZrN, and HfN Nanoparticles on Nanoporous Aluminum Oxide Membranes for Solar-Driven Water Evaporation and Desalination.
E. Traver, R. A. Karaballi, Y. Esfahani Monfared, H. Daurie, G. A. Gagnon, M. Dasog*
ACS Applied Nano Materials, 2020, 3, 2787–2794 (10.1021/acsanm.0c00107)
38. Overview of Synthetic Methods to Prepare Plasmonic Transition Metal Nitride Nanoparticles.
R. A. Karaballi, Y. Esfahani Monfared, M. Dasog*
Chemistry - A European Journal, 2020, Accepted (10.1002/chem.201905217)
(R. A. K. and Y. E. M. contributed equally)
37. The Influence of Hydrofluoric Acid Etching Process on the Photocatalytic Hydrogen Evolution Reaction Using Mesoporous Silicon Nanoparticles.
S. A. Martell, U. Werner-Zwanziger, M. Dasog*
Faraday Discussions, 2020, 222, 176–189 (10.1039/C9FD00098D)
36. High Surface Area Mesoporous Silicon Nanoparticles Prepared via Two-Step Magnesiothermic Reduction for Stoichiometric CO2 to CH3OH Conversion.
S. A. Martell, Y. Lai, E. Traver, J. MacInnis, D. D. Richards, S. MacQuarrie, M. Dasog*
ACS Applied Nano Materials, 2019, 2, 5713–5719 (10.1021/acsanm.9b01207)
35. Synthesis of Plasmonic Group 4 Nitride Nanocrystals via Solid-State Metathesis.
R. A. Karaballi, G. Humagain, B. R. A. Fleischman, M. Dasog*
Angewandte Chemie International Edition, 2019, 58, 3147–3150 (10.1002/anie.201813134)
34. Electrochemical Water Oxidation in Acidic Solution using Titanium Diboride (TiB2) Catalyst.
M. J. Kirshenbaum, M. H. Richter, M. Dasog*
ChemCatChem, 2019, 11, 3877–3881 (10.1002/cctc.201801736)
(Highly Important Paper, Women of Catalysis Special Issue)
33. Highly Efficient, Biochar-derived Molybdenum Carbide Hydrogen Evolution Electrocatalyst.
G. Humagain, K. MacDougal, J. ManInnis, J. M. Lowe, R. H. Coridan, S. MacQuarrie, M. Dasog*
Advanced Energy Materials, 2018, 8, 1801461 (10.1002/aenm.201801461)
32. Systematic Evaluation of Inorganic Salts as a Heat Sink for the Magnesiothermic Reduction of Silica.
L. Khanna, Y. Lai, M. Dasog*
Canadian Journal of Chemistry, 2018, 96, 965–968 (10.1139/cjc-2018-0165)
(Won CJC Best Paper Award, Nano/Hybrid Materials Special Issue)
31. Metallothermic Reduction of Silica Nanoparticles to Porous Silicon for Drug Delivery Using New and Existing Reductants.
Y. Lai, J. R. Thompson, M. Dasog*
Chemistry - A European Journal, 2018, 24, 7913–7920 (10.1002/chem.201705818)
30. Solid-State Route for Synthesis of Scalable, Luminescent Si and Ge Nanocrystals.
M. J. Kirshenbaum, M. G. Boebinger, M. J. Katz, M. T. McDowell, M. Dasog*
ChemNanoMat, 2018, 4, 423–429 (10.1002/cnma.201800059)
Postdoctoral Research
29. Oxidant-Activated Reactions of Nucleophiles with Silicon Nanocrystals.
M. Dasog,* J. R. Thompson, N. S. Lewis*
Chemistry of Materials, 2017, 29, 7002–7013 (10.1021/acs.chemmater.7b02572)
28. A Mechanistic Study of the Oxidative Reaction of Hydrogen-Terminated Si(111) Surfaces with Liquid Methanol.
N. T. Plymale, M. Dasog, B. S. Brunschwig, N. S. Lewis*
The Journal of Physical Chemistry C, 2017, 121, 4270–4282 (10.1021/acs.jpcc.6b11555)
27. Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition.
M. Dasog, A. I. Carim, S. Yalamanchili, H. A. Atwater, N. S. Lewis*
Nano Letters, 2016, 16, 5015–5021 (10.1021/acs.nanolett.6b01782)
Graduate Research
26. Revisiting an Ongoing Debate: What Role do Surface Groups Play in Silicon Nanocrystal Photoluminescence?
R. Sinelnikov, M. Dasog, J. Beamish, A. Meldrum,* J. G. C. Veinot*
ACS Photonics, 2017, 4, 1920–1929 (10.1021/acsphotonics.7b00102)
25. CO2 to Methanol Conversion Using Hydride Terminated Porous Silicon Nanoparticles.
M. Dasog,* S. Kraus, R. Sinelnikov, J. G. C. Veinot,* B. Rieger*
Chemical Communications, 2017, 53, 3114–3117 (10.1039/C7CC00125H)
24. Silicon 1s Near Edge X-ray Absorption Fine Structure Spectroscopy of Functionalized Silicon Nanocrystals.
A. Ritchie, W. Cao, M. Dasog, T. K. Purkait, C. Senger, Y. F. Hu, Q. F. Xiao, J. G. C. Veinot, S. G. Urquhart*
The Journal of Chemical Physics, 2016, 145, 154703 (10.1063/1.4964371)
23. Silicon Nanocrystals and Silicon‐Polymer Hybrids: Synthesis, Surface Engineering, and Applications.
M. Dasog, J. Kehrle, B. Rieger,* J. G. C. Veinot*
Angewandte Chemie International Edition, 2016, 55, 2322–2339 (10.1002/anie.201506065)
(Highly cited article on Web of Science, 2016-present)
22. Charge Transfer State Emission Dynamics in Blue-Emitting Functionalized Silicon Nanocrystals.
G. B. De los Reyes, M. Dasog, M. Na, L. V. Titova, J. G. C. Veinot,* F. A. Hegmann*
Physical Chemistry Chemical Physics, 2015, 17, 30125–30133 (10.1039/C5CP04819B)
21. Evolution of the Ultrafast Photoluminescence of Colloidal Silicon Nanocrystals with Changing Surface Chemistry.
Z. Yang, G. B. De los Reyes, L. V. Titova, I. Sychugov, M. Dasog, J. Linnros, F. A. Hegmann,* J. G. C. Veinot*
ACS Photonics, 2015, 2, 595–605 (10.1021/acsphotonics.5b00143)
20. Influence of Halides on the Optical Properties of Silicon Quantum Dots.
M. Dasog,* K. Bader, J. G. C. Veinot*
Chemistry of Materials, 2015, 27, 1153–1156 (10.1021/acs.chemmater.5b00115)
19. Size vs. Surface: Tuning the Photoluminescence of Freestanding Silicon Nanocrystals across the Visible Spectrum via Surface Groups.
M. Dasog, G. B. De los Reyes, L. V. Titova, F. A. Hegmann, J. G. C. Veinot*
ACS Nano, 2014, 8, 9636–9648 (10.1021/nn504109a)
(Highly cited article on Web of Science, 2015-18)
18. Tuning Silicon Quantum Dot Luminescence via Surface Groups.
M. Dasog,* J. G. C. Veinot*
Physica Status Solidi B, 2014, 251, 2216–2220 (10.1002/pssb.201400026)
17. Water-Soluble Photoluminescent D-Mannose and L-Alanine Functionalized Silicon Nanocrystals and their Application to Cancer
Cell Imaging.
Y. Zhai, M. Dasog, R. B. Snitynsky, T. K. Purkait, M. Aghajamali, A. H. Hahn, C. B. Sturdy, T. L. Lowary, J. G. C. Veinot*
Journal of Materials Chemistry B, 2014, 2, 8427–8433 (10.1039/C4TB01161A)
16. Detection of High-Energy Compounds using Photoluminescent Silicon Nanocrystal Paper Based Sensors.
C. M. Gonzalez, M. Iqbal, M. Dasog, D. G. Piercey, R. Lockwood, T. M. Klapotke, J. G. C. Veinot*
Nanoscale, 2014, 6, 2608–2612 (10.1039/C3NR06271F)
15. Highly Luminescent Covalently Linked Silicon Nanocrystal/Polystyrene Hybrid Functional Materials: Synthesis, Properties, and
Processability.
Z. Yang, M. Dasog, A. R. Dobbie, R. Lockwood, Y. Zhi, A. Meldrum, J. G. C. Veinot*
Advanced Functional Materials, 2014, 24, 1345–1353 (10.1002/adfm.201302091)
(Inside front cover)
14. Doping and Quantum Confinement Effects in Single Si Nanocrystals Observed by Scanning Tunneling Spectroscopy.
O. Wolf, M. Dasog, Z. Yang, I. Balberg, J. G. C. Veinot,* O. Millo*
Nano Letters, 2013, 13, 2516–2521 (10.1021/nl400570p)
13. Red States vs. Blue States in Colloidal Silicon Nanocrystals: Exciton Sequestration into Low-Density Traps.
J. Fuzell, A. Thibert, T. M. Atkins, M. Dasog, E. Busby, J. G. C. Veinot, S. M. Kauzlarich, D. S. Larsen*
Journal of Physical Chemistry Letters, 2013, 4, 3806–3812 (10.1021/jz401896k)
12. Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals.
M. Dasog, Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, J. G. C. Veinot*
ACS Nano, 2013, 7, 2676–2685 (10.1021/nn4000644)
(Highly cited article on Web of Science, 2014-17)
11. Low Temperature Synthesis of Silicon Carbide Nanomaterials Using a Solid-State Method.
M. Dasog, L. F. Smith, T. K. Purkait, J. G. C. Veinot*
Chemical Communications, 2013, 49, 7004–7006 (10.1039/C3CC43625J)
10. Size Independent Blue Luminescence in Nitrogen Passivated Silicon Nanocrystals.
M. Dasog, J. G. C. Veinot*
Physica Status Solidi A, 2012, 209, 1844–1846 (10.1002/pssa.201200273)
(Front cover)
9. Size-Controlled Solid-State Synthesis of Luminescent Silicon Nanocrystals using Stober Silica Particles.
M. Dasog, Z. Yang, J. G. C. Veinot*
CrystEngComm, 2012, 14, 7576–7578 (10.1039/C2CE25950H)
8. Solid-State Synthesis of Luminescent Silicon Nitride Nanocrystals.
M. Dasog, J. G. C. Veinot*
Chemical Communications, 2012, 48, 3760–3762 (10.1039/C2CC16971A)
7. From Si and C encapsulated SiO2 to SiC: Exploring the Influence of Sol-Gel Polymer Substitution on Thermally Induced
Nanocrystal Formation.
M. Dasog, C. Rachinsky, J. G. C. Veinot*
Journal of Materials Chemistry, 2011, 21, 12422–12427 (10.1039/C1JM11858G)
Undergraduate Research
6. Controlled Growth and Catalytic Activity of Gold Monolayer Protected Clusters in Presence of Borohydride Salts.
M. Dasog, W. Hou, R. W. J. Scott*
Chemical Communications, 2011, 47, 8569–8571 (10.1039/C1CC11813G)
5. Fluorescently Labeled Gold Nanoparticles with Minimal Fluorescence Quenching.
Y. Lu, M. Dasog, A. F. G. Leontowich, R. W. J. Scott, M. F. Paige*
The Journal of Physical Chemistry C, 2010, 114, 17446–17454 (10.1021/jp105516f)
4. Surface Properties of Water-Soluble Glycine-Cysteamine Protected Gold Clusters.
A. F. G. Leontowich, C. F. Calver, M. Dasog, R. W. J. Scott*
Langmuir, 2009, 26, 1285–1290 (10.1021/la902465b)
3. Probing the Relative Stability of Thiolate and Dithiolate Protected Au Monolayer-Protected Clusters.
W. Hou, M. Dasog, R. W. J. Scott*
Langmuir, 2009, 25, 12954–12961 (10.1021/la9018053)
2. Chemical Functionalization and Modification of Surface-Bound Cystamine-Glycine Monolayers on Gold Nanoparticles.
M. Dasog, A. Kavianpour, M. F. Paige, H. B. Kraatz, R. W. J. Scott*
Canadian Journal of Chemistry, 2008, 86, 368–375 (10.1139/v08-025)
1. Understanding the Oxidative Stability of Gold Monolayer-Protected Clusters in the Presence of Halide Ions under Ambient
Conditions.
M. Dasog, R. W. J. Scott*
Langmuir, 2007, 23, 3382–3387 (10.1021/la0627415)pages931–940